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Abstract

Reduction in the size and complexity of neural network is essential to im-

prove generalization, reduce training error, and improve network speed. Most

of the known optimization methods heavily rely on weight sharing concepts

for pattern separation and recognition. The method presented here focuses on

network topology and information content for optimization. We have studied

the change in the network topology and its effects on information content dy-

namically during the optimization of the network. The changes in the network

topology were achieved by altering the number of nonzero weights. The pri-

mary optimization is scaled conjugate gradient and the secondary method of

optimization a Boltzmann method. The conjugate gradient optimization serves

as a connection creation operator and the Boltzmann method serves as a com-

petitive connection annihilation operator. By combining these two methods its

is possible to generate small networks which have similar testing and training

accuracy, good generalization, from small training sets. Our findings demon-

strate that for a difficult character recognition problem the number of weights

in a fully connected network can be reduced by over 90%.

1 Introduction

The size and the complexity of neural network applications has grown rapidly.

The search for small networks with large information content and generaliza-

tion capability is ongoing. Most of the optimization strategies are a trade-off

between error and network complexity. The known optimization schemes [1,2,3]

have used this trade-off to minimize the cost function. Among various com-

plexity measures, Vapnic-Chervonenkis (VC) dimensionality [4], concentrates

on information content and distribution of information in the network. The

error term associated with increasing VC dimension can be reduced by greatly
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1 INTRODUCTION

expanding the size of training set or by reducing the VC dimension of the net-

work.

Boltzmann methods have been used as a statistical method for combinatorial

optimization and for the design of learning algorithms [5,6]. This method can be

used in conjunction with a supervised learning method to dynamically reduce

network size. The strategy used in this research is to remove the weights using

Boltzmann criteria during the training process. Information content is used as

a measure of network complexity for evaluation of the resulting network.

The competing mechanisms involved when the Boltzmann method is used in

conjunction with SCG are shown in table 1. This table lists five points where

these two methods can be compared. The Boltzmann method is self-organizing

while the SCG method is a supervised learning method. The Boltzmann method

seeks to minimize the the number of weights while maintaining the information

content of the network. The SCG method seeks to minimize an error function

on the training set. The important controlling parameter for the Boltzmann

method is the information in the network is the iteration time, t, as t -* oo.

The controlling informational parameter for the SCG method is the information

provided at t = 0 in the initial weights. The algorithmic control in the Boltz-

mann method is the temperature sequence applied during the iteration. The

equivalent controlling parameter for the SCG method is the restart sequence.

Boltzmann Method

Self-Organization

information minimization

generalization in testing

Info {t —>• oo)

Temperature sequence

SCG Method

Supervised Learning

error optimization

error in training

Info {t = 0)

Restart sequence

Table 1: Competing mechanisms when Boltzmann and SCG methods axe combined

for concurrent network optimization
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2 PRUNING VIA BOLTZMANN METHODS

2 Pruning via Boltzmann Methods

In this paper a fully connected network is optimized using the Scaled Conjugate

Gradient method (SCG) developed by MoUer [7] and modified by Blue and

Grother [8]. The SCG method is used as a starting network for the Boltzmann

weight pruning algorithm. The network has an input layer with thirty-two input

nodes, a variable size hidden layer with sixteen, thirty-two or sixty-four nodes

and an output layer with ten nodes. The initial network is a fully connected

network. The pruning was carried out by selecting a normalized temperature,

T, and removing weights based on a probability of removal:

Pi = exp(-|ti;,j/r)

The values of P, are compared to a set of uniformly distributed random

numbers, P,, on the interval [0, 1]. If the probability P, is greater than P,

then the weight is set to zero. The process is carried out for each iteration of

the SCG optimization process and is dynamic. If a weight is removed it may
subsequently be restored by the SCG algorithm; the restored weight may survive

if it has sufficient magnitude in subsequent iterations.

The dynamic effect of this is shown in figure 1 for five temperatures between

0.

1 and 0.5 at 0.1 intervals, starting from a fully converged cind fully connected

network. As the size of the temperature change increases the number of weights

removed initially increases, but the effect of later iterations of optimization and

pruning is to decrease the rate at which weights are removed. The number of

weights in the initial network was 1386, including bias weights. At all tem-

peratures the initial iterations are very effective in reducing the weights. The

decrease in the rate of pruning is the result of a critical phenomena character-

ized by a critical temperature, Tc, at which the new information added by the

SCG training balances the information removed by pruning. At this critical

point networks trained on small training sets will achieve identical testing and

training accuracy even when tested on large test sets.

The effect of the number of hidden nodes can be seen in figures 2, 3 and 4.

Figure 2 shows the effect on the network with 32 hidden nodes used in figure

1. As the temperature is increased the accuracy of the network for recognition

decreases slowly for temperatures up to 0.4. As the temperature approaches

0.5 the rate of weight removal shown in figure 1 slows and the rate of accuracy

decay accelerates. The two curves plotted are the training set and testing set

accuracy of the network. The training set accuracy is initially greater than the

testing accuracy. At a critical temperature, Tc, the testing accuracy and training

accuracy are identical. In figure 2, at the critical temperature of 0.58, read from

figure 2, chaotic behavior sets in the vicinity of Tc due to a critical effects of

weight removal. The behavior of the 32-64-10 network in figure 4 is similar to

the 32-32-10 network. The 32-16-10 network in figure 3 shows an increase in

temperature, Tc, and a decrease in accuracy at Tc. This increase in Tc is caused

by the reduced set of possible pruned configurations in the 32-16-10 network;

the initial 32-16-10 network is too small.
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2 PRUNING VIA BOLTZMANN METHODS

Figure 1: Weights removed as a function of iteration and temperature for T =
0.1, 0.2, 0.3, 0.4, 0.5. The lower curve is for T = 0.1; the upper curve is for T = 0.5.

Figure 2: Change in testing and training accuracy as a function of temperature for a

32-32-10 network after 1000 iterations at each temperature.
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2 PRUNING VIA BOLTZMANN METHODS

Figure 3: Change in testing and training accuracy as a function of temperature for a

32-16-10 network after 1000 iterations at each temperature.

Figure 4: Change in testing and training accuracy as a function of temperature for a

32-64-10 network after 1000 iterations at each temperature.
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2 PRUNING VIA BOLTZMANN METHODS

Figure 5: Weight distribution below Tc at T = 0.55.

Figure 6: Weight distribution above Tc sX T — 0.6
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2 PRUNING VIA BOLTZMANN METHODS

Figure 7: Information in weights, ]Clog2 (l^»l )5 below Tc bX, T = 0.55.

-10 -SO S 10

L>00(|W|)

Figure 8: Information in weights, I31og2 (l^i|)? above Tc at T = 0.6.
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3 WEIGHT REDUCTION AND INFORMATION CONTENT

3 Weight Reduction and Information Con-

tent

The effect on the information content of the network can be evaluated by exam-

ining the the distribution of weights in the network as a function of temperature.

Figure 5 shows the distribution of the absolute value of the weights at a tem-

perature near, but below, Tg. Figure 6 shows the distribution of the absolute

value of the weights at a temperature near, but above, Tc.

These distributions illustrate the mechanism involved in the collapse of test-

ing and training accuracy near Tc. The accuracy collapse is caused by the large

increase in weights near zero created by the most recent SCG iteration. In a

given training cycle some weights are removed. If these weights are redundant

they will be compensated for by other weights in the network. If these weights

are critical they will be restored by the SCG optimization. The peak in the

distribution near zero in both figures 5 and 6 is caused by this process. At Tc

the SCG creation process is just balanced by the Boltzmann pruning.

The effect of the near-zero weights is more important when viewed as in-

formation content. The VC dimension and the information content are both

approximately 2Z(1°62(I^«I) + !)• A weight distributions of this kind are shown

in figures 7 and 8 for T above and below Tc- When large numbers of near-zero

weights exist, their contribution to the sum dominates the network information.

Under these conditions the network is dominated by recently created weights

which have not been optimized by SCG iterations. This lowers network accuracy

without reducing VC dimension.

To evaluate the generalization capability of the pruned network the network

associated with a temperature T = 0.55 was tested on a sample of 221,000 digits

[9]. The predicted accuracy from Tc data was 75.5%; the accuracy achieved in

the test was 72.6%. In this region the change in accuracy of the network is about

5% for each AT of 0.001 so that this agreement is consistent with an accuracy

of Tc of ±.0005 with a value of Tc — 0.582.

4 Conclusions

A method of network optimization has been developed which reduces by 80% to

90% the number of weights required for moderately accurate character recogni-

tion. The method is based on achieving equilibrium between the information in

the training set and the number of network weights by concurrent weight cre-

ation by SCG optimization and Boltzmann weight removal. These reductions

allow both smaller training sets and smaller classification networks to be used.
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